
r . a -v .aI , I I . -. I) . . . .-. - - . . . . .- . .. - -,- . .. ," .- .' a

ca -aeato -a

COPY YIO~ to Ieptodudco

copy ava legibl e ezolc4°

VISCOPLASTIC ANALYSIS OF A

CONTINUOUS CYLINDRICAL
OPENING SURROUNDED BY

VOLCANIC TUFF

THESIS D I

AFIT/GAE/AA/82D-26 David E. SchmiLz MAR24 M
Captain USAF

kw Ibic seIadIOI1M=d setbI

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY (ATC)
.g AIR FORCE INSTITUTE OF TECHNOLOGY

.• (I III

Wright-Patterson Air Force Bose, Ohio

... 

9



DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

It



2'.

VISCOPLASTIC ANALYSIS OF A
CONTINUOUS CYLINDRICAL
OPENING SURROUNDED BY

VOLCANIC TUFF

THESIS

AFIT/GAE/AA/82D-26 David E. SchndiLz
Captain USAF

DTIC
'FILECTE

IMA 2 p,4.

L 'V" SL~3e1Qaead,42Iq



- .. . ". -. - - + . + .. * ° . . . . . . r. ., , 00 t +

•i'

VISCOPLASTIC ANALYSIS OF A CONTINUOUS

CYLINDRICAL OPENING SURROUNDED

BY VOLCANIC TUFF

THESIS

Presented to the Faculty of the School of Engineeri,q

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the
Requirements for the Degree of nAesion For 7

WTSGRA&I
Master of Science r1' Tk!

i U 't

y-Di, tribut01o1.
Ava lallt Ccces

A f11a~lt Ce
David E. Schmitz AT. 2 -,/o,

Captain USAF 25
Graduate Aeronautical Enqineering

December 1982

Approved for public relzjase;

distribution unlimitud

1



Acknowledgements

I would like to express my appreciation to Profess(.

A. N. ("Dr. P") Palazotto for his guicd.nce, advice, encouc qe-

ment, and patience throughout the course of this study. I

would also like to thank Captain Terry Hinnerichs and

Captain Jim Smail, of the Air Force Weapons Laboratory, 1,

their timely support of this project. Thanks also go to

*Dr. T. Nicholas and Captain Mike Bohun, of the Air Forcu

Materials Laboratory, for arranging the needed computef

resources.

I especially want to thank the two women in my >i

Holly and Brandy. Their unyielding support in this end,-Av

was invaluable.

ii

0O



Contents

Pa.,

Acknowledgements. . . . . . . . . ................. ...

List of Figures . . . . . . . ..................... . . ......

List of Tables . . . . . . .......................................

Abstract . . . . . . . . . . . . ... .. .. .. ..

I. Introduction . .. ... .... .. .. .. ..

Background.......... .. .. .. .. .
Approach . . . . . .... .. .. .. .. ..

Objective . . . . . .. .. .. .. ... .. 4

11I. Theory . . . . . . . . . .... .. .. .. ..

Plasticity . . . ... .. .. .. .. .. ..

Plasticity in Metals. .......... .. .
Plasticity in Rock. ........... .. .
Viscoplasticity . . .... .. .. .. .. . ...

III. VISCO Computer Program. ............ .

IV. Rock Mechanics........... . .. .. .. . . ..

V. Modeling . . . . ..... .. .. .. .. .. ..

Mesh Size . . .... .. .. .. .. .. ....

Model Size . . . . . . . . . . . . . . . . .

VI. Program Verification .... .. .. .. .. ..

One-Dimensional. .. ......... .. .. .
Two-Dimensional ............. .. .. .

VII. Results and Discussion. .......... .. .

Quasi-Static Analysis..... .. . .. .. .. .
Quasi-Transient Analysis. ........ .. .

*A Final Note.......... . . .. .. .. .. .

VIII. Suamiary and Conclusions... . . . .

B~ibliogjraphy... . . . . . . . . .

Vit . ...................... .. .. .

----- ----



.t. .

List of Figures

Figure Pa e

1 Cutaway of Deep Underground Missile Basing
-'. System . . .. . . ............

2 Geometrical Representation of the Von Mises
Yield Surface in Principal Stress Space...

3 Two-Dimensional Representation of the Drucker-

Prager and Mohr-Coulomb Yield Criteria . . .

* ro4 One-Dimensional Elastic-Viscoplastic Model . . i

5 Variation of Stress-Strain and Strength
Properties of Berea Sandstone ...........

6 Deriving Material Parameters from Mohr's
Circle Plots at Failure ... .............

7 Plate Under Uniaxial Loading .. ...........

8 jx and ay Comparison Between Published
Results iRef 11) and 576 Element Model . .

(1 9 Finite Element Model: 323 Nodes, 576
Elements . . . . . . ...... . . . . . ..

Si i,
10 AE , Ac Versus Time for the Two Element

Modelv nder Uniaxial Tension ............

11 y Comparison Between Elastic and Elasto-
Plastic Solutions Under In Situ Loading.

12 Finite Element Model: 144 Nodes, 238
Elements . . . . . . ..... . .............

0 13 ()x Stress Comparisons ..... ...........

14 Oy Stress Comparisons ..... ...........

15 ix Stress Comparisons ............

16 jy Stress Comparisons ..... .............

17 0x  Stress Comparisons ..... .............

18 y Stress Comparisons ..... .............

iv

0-



Figure

19 Model Nodal Displacements--i/4 kbar ...... 4

20 Steady State Plastic Zone--i/4 kbar ...... 4

21 Steady State Plastic Zone--l/2 kbar ....... .

22 Tunnel Deformation--I/4 kbar ............... 4

23 Tunnel Deformation--i/2 kbar ..... .......... 4.

24 Model Nodal Displacements--i/2 kbar .... ...... 4

25 Plastic Zone a Stresses Along 450 Radial . . 4
y

26 Effective Plastic Strain Profiles--1/4 kbar . .

27 Effective Plastic Strain Profiles--1/2 kbar . .

28 Transient Plastic Zone--i/4 kbar, y = 0.1. . .

29 Transient Plastic Zone--l/4 kbar, ' = 1.0. . .

30 Transient Plastic Zone--i/2 kbar, y = 0.1. . .

31 Transient Plastic Zone--l/2 kbar, = 1.0...

32 Effective Stress --1/4 kbar, y = 0.1 ,
y = 1.0 . . . . . . . . . . . . . . . . . . .

33 Effective Stress F --1/2 kbar, 1, = 0.1 ,

Y = 1.0 . . ....................

34 Plastic/Elastic Strain vs. Load Curves .......

35 (n as a Function of Time Along 45' Radial,
l/4 kbar, y = 0.1 ..... ...............

.4
36 .I as a Function of Time Along 45O Radial,

Yl/4 kbar, y = 1.0 ..... ...............

37 4) as a Function of Time Along 45' Radial,
Yl/2 kbar, y = 0.1 ..... ..............

38 J as a Function of Time Along '51 Radial,
Yl/2 kbar, y = 1.0 ..... ...............

39 1 as a Function of Time Alon. 45' Radial,
X1/ 4 kbar, y = 0.1 ..... ...............

v



Figure ae

40 ax as a Function of Time Along 450 Radial,

1 4  kbar, y = 1.0 . . . .............. . .. .. . ......

41 ax as a Function of Time Along 450 Radial,
1/2 kbar, y = 0.1 . . .................. .. .. .. ...

42 Ox as a Function of Time Along 450 Radial,
1/2 kbar, y = 1.0 . . .................. .. .. .. ...

43 Plastic Zone Developed Under In Situ Loading
Using. "Modified" Drucker-Prager Equation. . .

vi



List of Tables

Table Pa JO

1 Tuff Material Parameters..... .. . .. .. .. .

2 Comparing Eq (3.1) to Complete Drucker-Prager

Equations . . . . . .................... . .. .. ...

vii



Abstract

The effect of a surface nuclear blast on a deep und, r-

ground tunnel was studied using elastic-viscoplastic theor.

Quasi-static and quasi-transient loadings were analyzed us ng

a finite elemeqt model developed herein.

The computer program used is a two-dimensional plan,

stress/plane strain code using constan.c strain triangle

elements. Constitutive equations proposed by Drucker and

Prager were incorporated to account for the compressibilit

inherent to rock material. Plasticity was generated usiny

the Drucker-Prager yield criteria incorporated in the Malv Zn

flow law. Both viscoplastic and elasto-plastic material

behavior were modeled using the viscoplastic theory.

The quasi-static analysis compared excellently to

material behavior displayed in field studies and experiinc .al

work. Results obtained through the quasi-transient analyv :

give an appreciation of possible plastic zone growth.

Additionally, a modification to the Drucker-Prager equati,: ,

was proposed and found to show less plastic strain thar, ti:

full equations. This is promising when considered in li:. 'f

4the fact that the Drucker-Prager equations have been kn' ,x:,

allow too much plasticity at high pressure levels.

viii



VISCOPLASTIC ANALYSIS OF A -CNTINUOUS

CYLINDRICAL OPENING SURROUNDED

BY VOLCANIC TUFF

I. Introduction

Background

Until the mid 1970s, the United States based it ii, -r-

continental ballistic missiles (ICBMs) in shallow undergro, lid

concrete silos. This system was consi.dered sufficiently

protective to allow the United States ;:o survive a "first

strike," thus, giving a "second strike" capability.

With the advent of higher yield warheads couplen

increasingly accurate delivery systems, the protection pi

vided by the silo system became suspect, and the searci. a

new ICBM basing system began. One of the ideas which u

out of the search is the Deep Missile Basing System, wfii,.-

envisions a network of tunnels dispersed throughout a iai-,

* mass called a mesa. These tunnels are buried within thc

mesa, and are subjected to the natural ii situ strossu.,

well as the dynamic stresses resulting from the spher:i.a

0 propagating stress wave generated by a contact or neetr .-... c

blast (see Fig 1) (Ref 1).

The survivability of deep undergruuiid tunnels i

* function of both the strength of tho employed tunnul

1
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hardening measures (concrete liners, steel liners, rock

bolts, etc.), and the strength of the surrounding rock.

Economic tunnel design dictates minimum use of hardening

techniques, taking advantage instead of the protective rou

surrounding a tunnel (Ref 1). Therefore, the state of str =s

in the tunnel/rock system must be estimated.

Approach

Experimental results reveal that loading near tunnc

levels from a surface nuclear blast causes failure in unli .d

tunnels, characterized by a distressed or loosened zone of

rock at the springlines (the springline is perpendiculAr t

the maximum load direction), and tension cracks at the cn> o.i,

Since failure normally indicates plastic action, an elcisti -

0' plastic analysis is in order.

The Drucker-Prager plastic mat_.:. model represeiit

one of the idealizations of real rock which entails apprc '-.ate

elastic constants, a yield function and i flow rule. i,

important characteristics of the real struss-strain curv,.

are reflected in this model. First, elastic vesponse 1-

pronounced at lower loads. Second, as load is increascu

toward ultimate, the actual stress-strain cutve has aLi,_

bent over considerably so that the tangent modiulus at in.

stage is a small fraction of the init:al elascic modul..;_

The perfectly plastic model represent: , zuru tan.unt

Finally, the plastic behavior of rock is obsrvud Dy ,.'. .

residual strain when a complete unioading takes place L:c

3



the elastic range. This is in contrast to the nonlinear

elastic idealization where unloading follows the initial

* path and the strain is fully recoverable. This last charau-

* i teristic gives a distinction between a plastic and an elas'ic

-. rock and, in the most fundamental sense, rock has been krio, n

to be a plastic rather than an elastic material (Ref 2).

The rock/tunnel system will be modeled using the fii ite

element method, with an in-house code named VISCO. The ro k

will be treated for simplicity as a continuous and isotrop c

* .material. For the depths and yields of interest to deep

missile basing systems, the pressure wave from a nuclear b ist

will probably have a significant rise time, on the order o

1 to 10 transit times, and be of fairly long duration, 100 to

200 transit times; in effect, making a quasi-static (stead

state) approach appropriate. A quasi-transient analysis v, '.1

also be done using appropriate rise times for each load !(.1.

Objective

The objective of this thesis is to analyze the str..

around the tunnel under the conditions of quasi-static arid

quasi-transient loading. This will be accomplished usinqc

viscoplastic theory incorporating the Drucker-Prager matLL _,L

model developed in Chapter II.

0

4



II. Theory

Plasticity

The behavior of materials beyond the elastic range

termed plastic, and can be characterized by an incomplete

instantaneous recovery of strain upon removal of stress, a

change in strain with time under constant load, a change i..

stress with timhe under constant deformation, a variation o

mechanical properties with applied stress, or a variation ,f

mechanical properties with temperature, direction, and pos tion

in the body. Thus, the implication it. that the theory ot

elasticity can be used to make the first approximation o:

stresses, strains, and deformations in a structure undur

specified loading, and that various inelastic (plastic)

theories can be used to estimate the deviation from elast.i

behavior that may occur and to estimate the total loads tn t a

given structure can support before excessive deformation,

fracture, or disintegration occurs (Ref 4).

Plasticity in Metals

Based on the above paragraph, total strain in a :1Lt ial

can be written as

total elastic plastic
C. = .. + L.. ,1] i3 13

The onset of plastic deformation (or yielding) is govuLtiL y

a yield criterion, and post yield deformatioi. uccurs

greatly reduced material stiffness. A yield criterion 2w.

5



written in the form f(lyi) = k , where f is some furc..on

and k is a material parameter to be determined experimun ally.

Experimental observations by Bridgman (Pef 3) indicate tha

plastic deformation of metals is essentially independent o

hydrostatic pressure. Therefore, yield criteria can now b

written as f(J',J') - k , where J' and J are thu ;c und

and third invariants of the deviatoric stresses

S16 (."
1) ij - 3 ij'kk ".

One of the simplest yield criterion is the Von Mi!L-c
I
T

criterion (J') = k shown in Fig 2, which depicts thu yi [d

surface and the locus of points upon wPhich the principal r, 'Rial

stresses sum to zero (n plane). This may also be written

Of J7 (JA) 2 = (2.4

where

- 1
i.j ij

and u is termed the effective stress, a stress invariarnt ,,hich

*O measures the incremental change of the yield surface tu A..

overstress. For the case of uniaxial tension (c2

JIk is the uniaxial yield stress. For yielding to oCA',

(J5)" must reach the value of (J) in " uniLxial

test. The Von Mises yield criterion irnpiis that, if 0

of stress lies on the yield surface, I)lait;c . iow CC : I

* the state of stress is within the yielu surracu, UlaSL.<" .inS

6
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occur. During plastic straining, this yield surface expands

normal to itself (normality condition), thus, enforcing

isotropic hardening within the plastic zone.

After the onset of plasticity, a so called equivalent

yield stress function can be evaluated such that a gauge on

plastic flow can be observed, and which increases as a function

of the plastic- strain. The equivalent yield stress can be

written as

Y = a + Hc (2.5)
y p

where ay is the uniaxial yield stress, H' is the slope of

the strain-hardening portion of stress-strain curve, and p

is the plastic strain equivalent (Ref ). Y is used as a

0Q' universal stress-strain curve that governs the material's

uniaxial inelastic behavior during loading, and is valid only

when used with monotonically increasing loads. Once the onset

of plasticity has occurred, increased plasticity will result

only if c exceeds Y

Plasticity in Rock
4

Rock differs from metal in terms of plasticity because

rock is a compressible material. While metals have one stress-

strain curve, rocks have several which are a function of the

confining stress a - 0 3 An increase in confining pres-

sure significantly increases the compressive strength of rock.

Most ductile materials have a fairly long plastic range before

fracture occurs, where as brittle materials such as most

8
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rocks have a very limited plastic range, if any, for uniaxial

tension or compression. However, for triaxial loading, most

brittle materials tend to show a plastic region where permanent

deformation occurs. A yield criterion which accounts for

hydrostatic stresses is the Drucker-Prager yield criterion

(Ref 2), which modifies Von Mises by including Jl , the first

stress invariant (J al + 22 + a33) . Following the same

analogy as with the Von Mises (including the normality condi-

tion), the Drucker-Prager criterion car be written as

1
T

CJ + ( = (2.6)
1 ( 2 )

Therefore, plastic flow begins when the effective stress1

a = aJ + (J) 2  exceeds k ; k' can be thought of as the

yield stress, which in this case is a constant. The constant

a describes the dilatation rate of soil, dilatant behavior

being a volume increase under compression (Refs 6, 7, 17).

Digressing somewhat, the Drucker-Prager yield criterion is an

approximation to another criterion, the Mohr-Coulomb yield

criterion. Note in Fig 3 that two Drucker-Prager yield

surfaces are required to satisfy Mohr-Coulomb at the apices.

Varying the radii is accomplished by using two equations for

L and k' For the outer apices (BDF)

2 sine and k 6c (cos ) (2.7)

J3 (3-sinp) $ (3-sin{)

and for the inner apices (ACE)

9
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2__sin_ 6c (coso) (2.8)
jr (3 + sino) 4 (3 + sinO)

C is the cohesion coefficient, a measure of the shear resistance

between any two particles in a rock mass; shear resistance

is the combined effect of cohesive resistance and frictional

resistance. * is the angle of internal friction, and is

related to the'fracture plane of a specimen occurring under

a triaxial state of stress. Studies dealing with softer

* rocks and soils (Refs 10, 11) use Eq (2.8), while Eq (2.7)

apply to stiffer materials such as harder rocks or concrete.

Viscoplasticity

A time-oriented viscoplastic finite element code called

VISCO is used in this study. Time rate effects are always

present to some degree in all inelastic deformations. Whether

or not their inclusion has a significant influence on the

prediction of the material behavior depends upon several

factors. In the study of structural c-nmponents under static

loading at normal temperatures, it is accepted that time rate

effects are generally not important and the conventional

theory of plasticity, as described above, models the behavior

adequately. However, some materials, especially at high

temperatures, exhibit simultaneously the phenomena of creep

and viscoplasticity. Creep can be defined as a redistribution

uf stress and/or strain with time under elastic material

response while viscoplasticity is a time dependent plastic

i1



deformation (Ref 5). A viscoplastic analysis increments time

under full loading, while an elastic plastic analysis incre-

ments only the load.

The concept of viscoplastic material behavior is detailed

through the use of the one-dimensional rheological model in

Fig 4. The friction slider develops a stress op ,

becoming active only if a > Y , where Y is as above. The

excess stress ad = a - ap is carried by the viscous dashpot.

Instantaneous elastic response is carried via the spring.

This model, specifically the dashpot, allows the stress level

to instantaneously exceed the value prescribed by plasticity

theory, the solution tending to a steady state condition with

time (Ref 5).

Viscoplastic strain in rate form can be written as

.vp ;F
= < 4P(F) > Th (2.9)

where

<I(F)> = ¢(F) for F > 0 (2.10)

< <4(F)> = 0 for F < 0 (2.11)

is a fluidity parameter controlling i! : tic flow rate, and
F

is normally derived from uniaxial yield tests. -F is the flow

vector a for the associated plasticity which governs strain

in the plastic region. The form of :-(F) used in VISCO is

SF =( FO) (2.12)

12
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Fig 4. One-Dimensional Elastic-Viscoplastic Model
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00
' where F corresponds to a (effective stress) and F

_ corresponds to Y (equivalent yield stress) as described

previously. Using the Von Mises flow vector (Ref 5) results

in the VISCO definition of the viscopl,,stic strain rate

Ii = lJ af ~(2.13)

where a'j are the deviatoric stresses.

Using the Drucker-Prager flow vector and recalling that1

Y = k and a = aJl + (J')2 the viscoplastic strain rate

can be written as (Ref 6)

v= y - [aij] (2.14)

where

a.. = + -------1 when i =j (2.15)3.) 2 (j')2

~ofj

a.. - when i $ j (2.16)

* The generated plastic strain rates are multiplied by a time

increment to yield plastic strains. As noted earlier, a

steady state analysis will also be done. Under this condition,

* the key to using VISCO is the fluidity parameter y .

Perzyna showed that the constitutive equations of plastic

flow theory result as a limiting case from the more genural

1

14



constitutive equations of the viscoplastic theory as y

- approaches infinity (Ref 6). The defiA.ition of steady state

considering a finite y in conjunction with Eq (2.14) will

be discussed later.

O1
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III. VISCO Computer Program

VISCO is a plane strain/plane stress finite element

code utilizing constant strain triangle elements. Because the

program was initially designed for crack growth analysis, it

uses a Gauss-Seidel iterative solution technique employing

the initial stress method (Ref 10) to solve the equilibrium

equation

[k]{d) = {R} (3.1)

where [k] is normally highly banded and stored in compacted

form (retaining only non-zero terms), and {dj is the nodal

displacement vector.

As indicated above, once an elL.ent yields, the equiva-

lent yield stress increases as a function of the plastic

strain. This can be thought of as nonlinearity induced through

material property changes. Two procedures exist to account for

the effects of plasticity: one procedure reformulates the

matrix each time an element experiences plastic deformation

and is, therefore, both time consuming and expensive. The

second procedure is called the residual force method in which

the elastic stiffness matrix is used Ohroughout the analysis

and the effects of plasticity are tre ted as an applied load

to be added to tRi .

If the elasto-plastic stiffness matrix is writtun as

[k p  = [k] - [k] C  (3.2)

16



where [k] C  is the correction to the elastic stiffness matrix

at a given stage in the analysis. Equation (3.1) for a

particular load increment i becomes

([k]E - [ki]c ){Adi1 - {AR. (3.3)

and

[k]E {Ad i} = {AR i + [ki]C (Adi1 (3.4)

Defining

{Ad i = {Adi}E + {Adi}P (3.5)

where {Ad i } is the incremental displacement

then

[k] E l{dE ( +Adi)- {AR i  + [ki]C ({Adi)E

+ {Adi}P) (3.6)

from the elastic analysis

• [k] E  {Adi}E = {R i  (3.7)

so that

k 1 ( -d. }E + {.d. IP)= P (3.8)[k]j {Adi.Y [ki]C E{d P

In short, the additional displacements due to plasticity can

be solved by applying a corrective fo' :e .P to the elistic

system (Ref 11).

17



The residual force method can be utilized even for a

viscoplastic solution by incorporating a time step algorithm

as follows (Ref 9):

1. Increment time so that t = ti- I + dt

2. Compute the plastic strain increment as described in

above Eqs (2.14), (2.15), {d ?l'= {E-.) dti and add to the

preceding plastic strain.

3. Compute the plastic load vector

- f [B] [k] i dvol
vol

where [B] is the constant strain triangle strain-displace-

ment matrix.

4. Compute the external load vector

R i  {R}i - + {R}dt#

5. Compute nodal displacements

{d)i = [k]-i ({R}i + {p} i-

6. Compute current total strain

{fij.1 = [B] {d1i

7. Compute current stress

iPi
{c i.} = [k] ({cij.i - { }i )

18



---------------------------------- .. ..... .". . .

8. Insure the viscoplastic strain rate {P}i in

each element has reached tolerance limits and, if so, then

repeat steps 1-8 until desired simulation time is reached.

1

19



IV. Rock Mechanics

The state of stress at a point stronyly influences

the strength, stiffness, ductility and creep properties of

rock. Figure 5 shows variation in confining pressure,

a - a3 versus axial strain for Sandston (Ref 13). Here, as

in the remainder of this report (unless otherwise noted), all

displayed stresses are compressive. The increase in confining

pressure results in a significant increase in ultimate strength

as well as a larger strain at failure. Also, plastic strains

before ultimate failure (fracture) increase with confining

pressure. The Drucker-Prager yield criterion accounts for

confining pressure by including the first stress invariant

(J1 in Eq (2.6)), and also through the two material parameters

C and defined above. C and p are normally derived

from triaxial test data using Mohr's circles as shown in

Fig 6. Note that ai values are stresses at failure; in

essence, the circles represent the material failure surface as

a function of confining pressure. An alternative method was

used here, in which C was derived from a known ¢ value

and uniaxial test data. Using the spherical stress component
JX OY+ O 1 X - CZ

3x + Uy + oz and recalling that o - then
0ix  OX

for a uniaxial test I = 3 and a which yields a3 x = -2-

point on a plot of o versus I (not shown). Using a

sponsor supplied (from an unpublished report) slope of = 18

a o intercept is determined and is used as the value for

xy
20
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Fig 5. Variation of Stress-Strain and Strength
-. Properties of Berea Sandstone
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Fig 6. Deriving Material Parameters from Mohr's
* Circle Plots at Failure
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C (in equation form C = (- tanlSG)) . Using this

method with given (Ref 7) triaxial data generated C values

within 10% of known values. All material values for Tuff as

used in this effort are presented in Table 1 (E, 0, and v

were supplied by the sponsor; all others are derived).

TABLE 1

Tuff Material Parameters

Parameter Value

E 1.15E6 psi

180

C 980.7 psi

k' 976.4 psi

0-o a .1078

v .33

23
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V. Modeling

Mesh Size

Since the size of the modeled section for this study

had the potential to become very large, it was necessary to

discover early a satisfactory mesh size limit. Mesh grading

was also considered in conjunction with appropriate aspect

ratios, where aspect ratio (AR) is the ratio of triangle height

to width (not greater than AR=3) (Ref 14).

Timoshenko (Ref 15) gives a closed form elastic solu-

tion to the problem of a hole in a plate under uniaxial tension

or compression, based on a ratio of d to a , where d is

the plate half-width and a is the radius of the hole (Fig 7).

Values of the stress concentration factor k at the crown
C

and springline were used as the basis for determining the

fineness of the mesh around the cutout. The radius of the

hole is problem dependent; thus, determining d for any given

d/a ratio. Arbitrarily selecting a d/a ratio of 5, with

a given as 60 inches, yields a d value of 300 inches for

the half-plate width. Using an element size of 6 inches by

12 inches (AR=2) near the hole yielded values of 2.97 for aY

at the springline, and -1.01 for ax  at the crown. Comparing

to Timoshenko's values of 3.08 for u and -1.0 for ,
y x

gave acceptable errors of 3.56% and 1.0t respectively.
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Model Size

The in situ state of stress in a geological mass is the

natural state of stress at any given point. Baker, et al

(Ref 11) used a finite element model employing both elastic

and elasto-plastic theory to analyze a deep tunnel in a rock

mass. Setting both horizontal and vertical boundaries at

10 radii (600 inches) gave elastic in situ stresses in agree-

ment with Baker's (maximum errors of 4.0% for a and 6% for

ax on a horizontal axis through the tunnel, see Fig 8).

Summarizing, the model is 600 inches square with 323 nodes and

576 elements. The smallest elements z:e Lext to the cutout and

are 6 inches by 12 inches. As Fig 9 shows, boundaries not

loaded are fixed to move in only one direction.

0
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( VI. Program Verification

One-Dimensional

To verify the changes made in VISCO to employ the Drucker-Prager

elastic-perfectly plastic material model, a one-dimensional viscoplastic

analysis was done using a plane stress, simple tension, two-element model.

Owen (Ref 5) notes that for this case, a stress unbalance will always exist

and steady state conditions cannot be achieved using the initial strain

approach of VISCO as would be expected. In equation form

Svp Y[al ( (y + Hevp)] (6.1)

but since H' 0

E = y[i a ] (6.2)vp y]

where (ai - a ) is the stress unbalance. Using the algorithm described in
y

Chapter III where stress strain relationships are in terms of the elastic

stiffness, Aa or the increment of stress between time steps can be written

in the following form:

Aa = E(AL E vp) (6.3)

The two element case was run over a period of ten seconds and the stress

increment approaches zero as it should so that response is contributed to

the time interval size. For

29



a

Aa = E(A - ACivp) = 0 (6.4)

or

A- ivp (6.5)

Fig. 10 shows a delay in acquiring the zero a AE : Aevp). This can be

attributed to the size of the time interval incorporated into the viscoplastic

equation. The smaller the time step the closer the differential strains.

0 The Visco model responded as indicated by Owen in that there is always a

stress unbalance. flarcal (Ref 8) has shown that a time independent approach

(non-visco) would produce a singularity for the same conditions.

)Two-Dimensional

The Baker, et al (Ref 11) elastic-plastic tunnel analysis was used

as another verification of the Drucker-Prager model used viscoplastically.

Previous analysis showed that a stress concentration exists around the cutout

when analyzed elastically. Note in Fig 11 the comparison between the ay

* stresses developed in the elastic solution and those developed in the elasto-

plastic solution along a horizontal section through the tunnel. Steady state

conditions were achieved using a fluidity parameter y of 1.0 in2/lbf-sec

* Steady state is indicated by a zero strain rate (Eq 2.14) in all elements.

The results illustrate the fundamental principle that plastic flow tends to

relieve the high stress concentrations that would ordinarily devellp

S in perfectly elastic materials. Because stresses are redistributed,

note that the viscoplastic stresses exceed the elastic stresses

as distance from the cutout increases. These

I '
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results compare well with Baker's; within 15% for a and
y

within 5% for ax

Due to the high cost and lengthy computer time required

.for solution of the equilibrium equation when using the 576

element model, a new model was developed (Fig 12) containing

only 238 elements. The 576 element model (fine mesh) required

computer time ACPU time) of 700 seconds at a cost of $52.34

to solve Baker's elastic-plastic problem, while the 238 element

model (course mesh) required 285 seconds at a cost of $20.38.

A comparison between the two meshes in terms of stresses x

and ay along three representative radials is detailed in

Figs 13-18; note that the two meshes do not vary by more than

10%. The accuracy developed by the coarser mesh versus its

lower cost, dictated use of the model Lor the remainder of the

study.

The final comparison designed to validate both program

and model contrasts material movement generated experimentally

(Ref 1) versus material movement predicted using the theory and

model developed thus far. Using loads that approximate loading

* at tunnel levels from a nuclear blast, resulted in nodal

displacements presented in Fig 19. Note that in the vertical

direction, most material moves up away from the cutout while the

* node at the springline moves in the opposite direction bucause

thu cutout provides no support (all cutout nodes collapse

inward). This compares excellently with experimental results.
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VII. Results and Discussion

Quasi-Static Analysis

Two different loadings are considered in this section

and in the following section, representing either varying

nuclear weapon yields, varying tunnel depths, or both. In

situ loads were also considered, and are merely added to the

pressure wave loading. For convenience, the lower magnitude

qloading will be referred to as 1/4 kbar (I kbar = 15,000 psi),

the higher loading as 1/2 kbar loading. The weapons effect

loading shown (Figs. 15, 16) can be attributed to wave propa-

gation studies as indicated in Reference 1.

Figures 20 and 21 show the plastic zone developed for

1/4 and 1/2 kbar loading respectively, using a y value of

1.0. The reader should recognize that even though a steady

state solution is being carried out, a relatively small value

for y is being used. This value simply means that steady

state is obtained after a longer period of time compared to

larger 's . Note that the plastic zone envelopes the ulntire

cutout for the larger load and that the vertical applied

stress (3475 psi)for this larger load has increased in yrcater

proportion than the horizontal stress between the two case,.

Figures 22 and 23 display tunnel deformation for the 1/4 aid

1/2 kbar cases respectively. It can be seen that the 1'2 rldir

case experiences much larger deformations than the 1/4 kbav

case. Also note that the major deflection occurs at thu crvown

for the 1/4 kbar loading, and at the springlinu for the 1/2 kbur
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case. The much larger deformations for the 1/2 kbar loading

are due to both the increased load and the fact that the entire

tunnel is experiencing plastic deformation. Figure 19 shows

nodal displacements in the model for the 1/4 kbar case; dis-

placements are similar for 1/2 kbar loading (Fig 24). Both

show springline area displacements consistent with experimenta-

tion (Ref 1).

Figure 25 compares plastic zone stresses along a 450

radial between the two cases, where positive values denote

c(mpression. The effective stress & for all elements in

the plastic region is the same (976.4 psi), despite the much

larger stresses experienced for 1/2 kbar loading. It was

noted earlier that plastic flow redistributes high stress

concentrations. This redistribution o ,-tresses is clearly

seen here because the much larger stresses developed in the

1/2 kbar case versus the 1/4 kbar case still produce an

effective stress equal to the constant yield stress k"

Note the variance in nodal displacements displayed in Figures

19 and 24. Because the Drucker-Prager yield criterion accounts

0 for hydrostatic stresses (compressibility), a large amount of

material movement through compaction and crushing occurs.

Thus, the effective stress equals the yield stress for twc

* reasons: relative displacements are i. as large as thuy

initially appear, and the model will only allow the efItct2v,

stress to equal the yield stress in the pl~istic zone Itui ,itady

0 state conditions (contrasting the rusuuts obtainud bulaw.).
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However, this yield stress does not correspond to a unique

strain level, as shown in Figures 26 and 27 which display

effective plastic strain (Eq 3.2 below) contours in the plastic

zone for the 1/4 kbar case and the 1/2 kbar case respectively.

The larger effective strains in the 1/2 kbar case (at least 6

times greater) indicate more straining occurring, which explains

that case's larger plastic zone.

Twenty-four elements in the 1/2 kbar loading model

experienced tension in one or both component directions (x or

y). These elements were all within 27 inches of the cutout and

on radials from 110 to 901 from the horizontal (note that

Fig 25 shows no tension because plotted stresses are averaged

between two adjacent elements and compression always dominated

tension). However, 9 of the 24 tension elements were concentrated

between the 850 and 90' radials. This concentration of tensile

stresses is appropriate when viewed in terms of material

movement at the springline depicted in Fig 24. The 1/4 kbar

case also had tension elements, although fewer and confined to

radidls from 750 to 85'. Comparing the two cases, 6tiin

components, as well as effective strains,were on the ord,i of

4 to 5 times larger for tension elements in the L/2 kbar casus

versus 1/4 kbar. Strains this large could be indicative or

tensile material failure.

Quasi-Transient Analysis

In order to more accurately represent the physical wdve

propagation through the tunnel, a triangular loading function
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(as indicated in Ref 1) was incorporated into the analysis.

Two different load rates (supplied by the sponsor) were used,

which are a function of the loading levels.

Figures 28-31 show plastic zone development for quasi-

transient loading. Note the differing values of the fluidity

parameter y (0.1 and 1.0) chosen to provide a lower and upper

bound for possible y values to be determined experimentally.

Recall that y = 1.0 was used in the steady state analysis.

The same y value is now being used to study a transient

state. This can occur due to the unique set of equations

present in the viscoplastic solution. As employed here,

is truly acting as a time dependent function, rather than as

a so called dummy variable as it was in the steady state

approach. Each figure shows the load history; P in vertical

(1000 psi in situ load) does not equal Pmin horizontal

(467 psi in situ load). Loads shown are maximum loads (in

situ plus weapons effect). Comparison with the static results

(Figs 20, 21) reveal significantly smaller plastic zones for

both load levels, because the short times modeled do not allow

as much plastic flow as in the steady state analysis. The

size of the 1/4 kbar transient plastic zone was 27% and 47.

of the static plastic zone for 7 = 0.1 and , = 1.0

respectively. For the 1/2 kbar case, 15% and 43% of the

static plastic zone for y = 0.1 and , = 1.0 respectivuly.

'he plastic zones for ' = 1.0 (Figs 29, 31) are largu thian

the zones for T = 0.1 (Figs 28, 30) because 0.1 pro-

vides less plastic flow as dictated by Eq (2.14).
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Recall t ,t viscoplastic material behavior as modeled

by che one-dimensional rheological model (Fig 4) allows the

stress level to instantaneously exceed "he yield stress due
to the overstress model employed. ffective stressesa

greater than the yield stress are shown in Figs 32 and 33,

which are plots of a versus time for an element in the plastic

zone. Note the. stresses in the 1/2 kbar case are roughly twice

q those in the 1/4 kbar case; both figures reflect a higher c

for y = 0.1 because y = 1.0 allows more plastic flow and

thus lower stress. This larger amount of plastic flow ( = 1.0)

is also responsible for a larger final a at t = .04/.06suc,

because less elastic strain is available for release during

unloading. Figure 34 compares load -strain curves between an

C element with plastic deformation and one without. The two

curves do not return to zero load because P consists of
max

both in situ and weapons effect loading. Note that the

element in the plastic zone is straining 3 to 4 times more than

the elastic element. Although a large portion of the plar.tic

element's strain is recovered, some irreversible strain is

present. This plastic strain is caused by slippage, crushing,

and rearrangement of rock particles.

Figures 35-38 compare a stresses along a 45'radij1y

4 for the two load cases with varying 1 . Figures 39-42

compare o stresses in a similar fashion. The 1/4 kbi:
x

strLsses of Figs 35 and 36 converge as :ivjnc_ uway fro;: ti ._

cutout increases, because only 15% of the vertical load is
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varying with time. Eighty-nine percent of the 1/4 kbar

horizontal load varies with time; respective percentages for

1/2 kbar loading are 72% and 95%, explaining the mu-h greater

variability in final stresses (Figs 37-42). Note in all cases

that maximum stresses (at t = .03 for 1/4 kbar, and t = .02

for 1/2 kbar) near the cutout exceed the steady state stresses.

One would expect the component stresses to follow G , i.e.,

stresses at t = .03 for the 1/4 kbar case (t = .02 for 1/2

kbar) srnould be a maximum. However, note in Figs 35 and 36

that t = .03 (1/4 kbar) stresses are not consistently the

highest. This is another example of the redistribution of

stresses afforded by plastic action.

Finally, note that Figs 40 and 42 show tension (negative

q Q values) for arithmetic average ax  stresses between elements

for y = 1.0 , 1/4 and 1/2 kbar loading. Although some

tension was developed in the static analysis, the tension

developed for the transient case is much more severe. TLe

1/2 kbar case, for example, developed 91 tension elements;

these instantaneous tensile stresses may cause cracks which

will not close due to in situ loading __Ler the pressure wave

passes, leading to zones of fallen rock in the tunnel.

A Final Note

Lishop (Ref 1) suggests that the Drucker-Prager yiu,

criterion allows excessive plastic flow. Bishop turth.r
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intimates that this plastic strain error is due to the fact

that large volumetric strains are allowed to occur. From

Eq (2.14)

.vp
=[ 1] [a] (2.14)

where for direct (volumetric) strains

Uij k v + a] i = j) (2.15)

1

Note that a = aJl + (J2 )2 (yield surface).

In an effort to reduce the amount of plastic volumetric

strain, the a term was removed from Ec: (2.15) so that

Lij k (3.1)

Note that by removing a in this fashion, it is still included

in the c term which triggers the plastic strain rate calcula-

tion. The Baker, et al (Ref 11) in situ loading case was

analyzed using Drucker-Prager in this form and compared against

the earlier analysis.

0 Figure 43 shows the size of the plastic zone, whicn wts

the same for both forms of the yield v iterion. Table 2

compares a representative stress value ( y) and plastic

effective strain for several elements in the plastic zo I:,

where plastic effective strain is dcfinud ac (Rd 9)

vp =12 P P

* 'EFF CijLij
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Table 2 shows that the stresses (Ox, az, uxy followed a similar

pattern) as well as most of the effective plastic strains were

less for Eq (3.1) than for the complete Drucker-Prager equation.

The validity of this form of the Drucker-Prager equations can

only be proven experimentally. However, the fact that smaller

effective strains aie predicted is attractive.

TABLE 2

Comrc-ring Eq (3.1) to Complete Drucker-Prager Equations

Element in Eq (3.1) Drucker-Prager

Plastic Zone a vp y EP
y EFF y EF

24 1157 .00204 1328 .00367

25 813 .00183 856 .00329

q 26 1573 .00124 1785 .00159

27 1045 .00135 1185 .00137

28 1910 .00045 2031 .00036

29 1359 .00030 1449 .00028

30 1142 .00183 !313 .0032

31 781 .00158 '33 .0U2 0

32 1512 .00112 1705 .00134

33 974 .00083 1126 .0010

NOTE: See Fig 43 for Plastic Zonu
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VIII. Summary and Conclusions

- A two-dimensional plane stress/plane strain finite

element program called VISCO was used to model the stress

field around a deep underground tunnel. The constitutive

equations employed in VISCO were in the form of an elastic-

perfectly plastic material model developed by Drucker and

Prager. Plasticity was generated using the Drucker-Prager

Uequations incorporated in the Malvern flow law. The following

statements and conclusions are based on the analysis presented

in this paper.

1. Viscoplastic theory can be used to model steady

state elasto-plastic material behavior by setting the fluidity

constant in the strain rate equation to a large value. Rusults

obtained in this effort for verification purposes agreed

excellently with published results.

2. It is possible to follow the effects of a nuclear

blast using viscoplastic theory for both static and quasi-

transient loading of tunnels buried in tuff. Results pro dacud

for the steady state conditions yielded physical activity

recognized in field tests and experimental work. The transient

analysis lends an appreciation of possible plastic zonu qruwth

allowing for actual experimental modification.

3. Tunnel displacements diffu__.i by extreme aMLounts

as the load varied in the quasi-static analysis. Sprinqi±no

displacements were nearly eight times greater, and crown
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displacements were over three times greater for 1/2 kbar

versus 1/4 kbar loading. Deformations will increase as the

size of the plastic zone increases.

4. In the quasi-transient analysis, the size of the

plastic zone is a function of both loading and fluidity

constant. The two fluidity constants used here indicate

trends which may be compared against experimental results.

Because the larger fluidity constant - more plastic

flow, less elastic strain is released upon unloading, creating

larger final (t = .06, t = .04) tunnel displacements. For

all cases (both y and at any time) the quasi-transient model

experienced less tunnel deformation than the comparable

loading's static analysis.

5. Inaccurately large strains can be duveloped by any

elastic-perfectly plastic material model. Reports show that

the Drucker-Prager model may also predict excessive hydro-

static strains. A "modified" Drucker-Lrager material model

compared favorably against the actual equations by predicting

smaller plastic strains.

4

I
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